Saturation Theorems for Bernstein Polynomials in Banach Subspaces of $C(I, \mathbb{R})$

Axel Grundmann
Abteilung Mathematik, Universität Dortmund, Postfach 500 500, D-4600 Dortmund 50, West Germany
Communicated by R. Bojanic

Received July 28, 1977

1. Introduction

Let $I=[0,1]$ be the closed unit interval. Let $C=C(I, \mathbb{R})$ be the space of all continuous functions $f: I \rightarrow \mathbb{R}$. If $\Omega \in C$ is a nonnegative and concave function, we introduce the norm $\|f\|_{\Omega}=\sup _{\alpha \in I_{0}}(|f(x)| / \Omega(x))$, where I^{0} is the open unit intervall. Now let C_{Ω} be the space of all $f \in C$ with $\|f\|_{\Omega}<+\infty$. $\left(C_{\Omega},\|\cdot\|_{\Omega}\right)$ is a Banach subspace of C and is continuously embedded in C. It is easy to verify, if $B_{n}(f)$ is the n-th Bernstein polynomial, that the following hold:

$$
\begin{gathered}
B_{n}: C_{\Omega} \rightarrow C_{\Omega} \\
\left\|B_{n}(f)\right\|_{\Omega} \leqslant\|f\|_{\Omega}, \\
\sup _{n \in \mathbb{N}}\left\|B_{n}\right\|_{\Omega} \leqslant 1
\end{gathered}
$$

The aim of the present paper is to characterize the class of functions $D(\theta)$, $\theta \in(0,1]$. Here $f \in D(\theta)$ iff

$$
\left\|B_{n}(f)-f\right\|_{\Omega}=O\left(n^{-\theta}\right) .
$$

Let D be the domain of $\left(B_{n}\right)_{n \in \mathbb{N}}$ in C_{Ω}, that is, the space of all functions $f \in C_{\Omega}$ with $\left\|B_{n}(f)-f\right\|_{\Omega} \rightarrow 0$. The following statements are equivalent:

$$
\begin{equation*}
f \in D \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
f \in \overline{C^{(2)} \cap C_{\Omega}}, \tag{1.2}
\end{equation*}
$$

where $C^{(2)}$ is the space of all twice continuously differentiable functions in C and - is the closure operator in C_{Ω}. In general $C \neq C_{\Omega}$. If we assume

$$
\lim _{x \rightarrow 0} \frac{x}{\Omega(x)}=0=\lim _{x \rightarrow 1} \frac{x}{\Omega(x)},
$$

then it is easy to prove that D consists of all $f \in C_{\Omega}$ for which

$$
\lim _{x \rightarrow 0} \frac{f(x)}{\Omega(x)}=0=\lim _{x \rightarrow 1} \frac{f(x)}{\Omega(x)} .
$$

In this case $D \neq C_{\Omega}(f=\Omega)$.

2. Inequalities

For $0 \leqslant h \leqslant x \leqslant 1-h \leqslant 1$ and $f: I \rightarrow \mathbb{R}$ we set:

$$
\Delta_{h}^{2} f(x)=f(x+h)-2 f(x)+f(x-h) .
$$

Let $L_{1}(x)=x \log (x), L_{2}(x)=L_{1}(1-x)$ and $L=L_{1}+L_{2}$.
In the following lemma we collect several simple inequalities needed in this paper.

Lemma (2.0). We have

$$
\begin{align*}
B_{n}\left(L_{1}\right) x-L_{1}(x) & \leqslant \frac{1-x}{n}, \tag{2.1}\\
B_{n}\left(L_{2}\right) x-L_{2}(x) & \leqslant \frac{x}{n}, \tag{2.2}\\
\Delta_{h}{ }^{2} L_{1}(x) & \leqslant 2 \frac{h^{2}}{x}, \tag{2.3}\\
\Delta_{h}{ }^{2} L_{2}(x) & \leqslant 2 \frac{h^{2}}{1-x}, \tag{2.4}\\
B_{n}\left(L_{1}\right)^{\prime \prime} x & \leqslant \frac{2}{x}, \tag{2.5}\\
B_{n}\left(L_{2}\right)^{\prime \prime} x & \leqslant \frac{2}{1-x} . \tag{2.6}
\end{align*}
$$

Proof. For (2.1):

$$
\begin{aligned}
B_{n}\left(L_{1}\right) x & =\sum_{k=0}^{n} \frac{k}{n} \log \left(\frac{k}{n}\right) p_{k, n}(x), \\
B_{n}\left(L_{1}\right) x-L_{1}(x) & =\sum_{k=0}^{n} \frac{k}{n}\left(\log \left(\frac{k}{n}\right)-\log (x)\right) p_{k, n}(x) .
\end{aligned}
$$

Since \log is concave, we have the inequality

$$
\log \left(\frac{k}{n}\right)-\log (x) \leqslant \frac{1}{x}\left(\frac{k}{n}-x\right) .
$$

Then

$$
\begin{aligned}
B_{n}\left(L_{1}\right) x-L_{1}(x) & \leqslant \frac{1}{x} \sum_{k=0}^{n} \frac{k}{n}\left(\frac{k}{n}-x\right) p_{k, n}(x) \\
& =\frac{1-x}{n} .
\end{aligned}
$$

(2.2) is a direct consequence of (2.1).

For (2.3) and (2.4) see [1], (2.5) is by follows from

$$
\begin{aligned}
B_{n}\left(L_{1}\right)^{\prime \prime} x & =n(n-1) \sum_{k=0}^{n-2} \Delta_{1 / n}^{2} L_{1}\left(\frac{k+1}{n}\right) p_{k, n-2}(x) \\
& \leqslant n(n-1) \sum_{k=0}^{n-2} 2 \frac{(1 / n)^{2}}{(k+1) / n} p_{k, n-2}(x) \\
& \leqslant 2(n-1) \sum_{k=0}^{k-2} \frac{p_{k, n-2}(x)}{k+1}
\end{aligned}
$$

Since

$$
\frac{1}{k+1}=\int_{0}^{1} \xi^{k} d \xi
$$

we have

$$
\begin{aligned}
B_{n}\left(L_{1}\right)^{\prime \prime} x & \leqslant 2(n-1) \int_{0}^{1}(1-x+\xi x)^{n-2} d \xi \\
& =\frac{1-(1-x)^{n-1}}{x} \\
& \leqslant \frac{2}{x}
\end{aligned}
$$

Q.E.D.

The last two inequalities are direct consequences of the fact that Ω is a concave function.

Lemma (2.7). Let $\Phi(x)=x(1-x)$. Then

$$
\begin{array}{r}
\frac{n}{\Phi(x)} \sum_{k=0}^{n}\left(\frac{k}{n}-x\right)^{2} \Omega\left(\frac{k}{n}\right) P_{k, n}(x) \leqslant \Omega\left(x+\frac{1-2 x}{n}\right), \\
\frac{n}{(n-1) \Phi(x)} \sum_{k=0}^{n} \Phi\left(\frac{k}{n}\right) \Omega\left(\frac{k}{n}\right) p_{k, n}(x) \leqslant \Omega\left(x+\frac{1-2 x}{n}\right) \tag{2.9}
\end{array}
$$

Proof. Follows from the fact that the left sides of (2.8) and (2.9) are convex combinations.

3. A K-Functional for $\left\|B_{n}(f)-f\right\|_{\Omega}$.

If $g \in C^{(2)}$ and $k(x, u)$ is Green's kernel for the differential operator $l(g)=g^{\prime \prime}$, with $g(0)=g(1)=0$, then we have

$$
g(x)=a(x)+\int_{0}^{1} k(x, u) g^{\prime \prime}(u) d u
$$

where a is a linear function and

$$
k(x, u)= \begin{cases}(x-1) u, & 0 \leqslant u \leqslant x \\ x(u-1), & x \leqslant u \leqslant 1\end{cases}
$$

Now we define a K-functional for $f \in C_{\Omega}$. If $t \geqslant 0$, and $A=C^{(2)} \cap C_{\Omega}$, we set:

$$
K(t, f)=\inf _{\Omega \in A}\left(\|f-g\|_{\Omega}+t\left\|\Phi g^{\prime \prime}\right\|_{\Omega}\right)
$$

Lemma (3.0). If $f \in C_{\Omega}$, then

$$
\left\|B_{n}(f)-f\right\|_{\Omega} \leqslant 3 K\left(\frac{1}{n}, f\right)
$$

Proof. First, it is clear that $\left\|B_{n}(f)-f\right\|_{\Omega} \leqslant 2\|f\|$. Secondly, we have to estimate $\left\|B_{n}(g)-g\right\|_{\Omega}$ for $g \in A$. Since

$$
\begin{gathered}
B_{n}(g) x-g(x)=\int_{0}^{1}\left(B_{n}(k(\cdot, u)) x-k(x, u)\right) g^{\prime \prime}(u) d u \\
B_{n}(g) x-g(x) \left\lvert\, \leqslant\left\|\Phi g^{\prime \prime}\right\|_{\Omega} \int_{0}^{1}\left(B_{n}(k(\cdot, u)) x-k(x, u)\right) \frac{\Omega(u)}{\Phi(u)} d u\right.
\end{gathered}
$$

Note that $L_{2}(x)=\int_{0}^{1}(k(x, u) /(1-u)) d u$. Also $\Omega(u)-\Omega(x) \leqslant \Omega^{[1]}(x)(u-x)$ where $\Omega^{[1]}(x)=\frac{1}{2}\left(\Omega^{\prime}(x-0)+\Omega^{\prime}(x+0)\right)$ for $x \in I^{0}$, since Ω is concave. Moreover, we have as an essential consequence of the fact that Ω is a concave function, the inequality $\left|\Omega^{[1]}(x)\right| \Phi(x) \leqslant \Omega(x)$. By all this it is easy to verify the following estimates:

$$
\begin{aligned}
& \int_{0}^{1}\left(B_{n}(k(\cdot, u)) x-k(x, u)\right) \frac{\Omega(u)}{\Phi(u)} d u \\
& \leqslant \Omega(x)\left(B_{n}(L) x-L(x)\right)+\left|\Omega^{[1]}(x)\right|\left((1-x)\left(B_{n}\left(L_{2}\right) x-L_{2}(x)\right)\right. \\
&\left.+x\left(B_{n}\left(L_{1}\right) x-L_{1}(x)\right)\right) \\
& \leqslant \frac{1}{n} \Omega(x)+\left|\Omega^{[1]}(x)\right| \frac{2 \Phi(x)}{n} \\
& \leqslant \\
& \quad \frac{3}{n} \Omega(x)
\end{aligned}
$$

(see (2.1) and (2.2)). The rest follows by standard arguments.

4. Inverse Arguments

We follow the main ideas of [1]. Thus, we have to estimate $\left\|\Phi B_{n}(f){ }^{\prime \prime}\right\|_{\Omega}$ for $f \in C_{\Omega}$ and for $f \in A$.

Lemma (4.0). If $f \in C_{\Omega}$, then

$$
\left\|\Phi B_{n}(f)^{\prime \prime}\right\|_{\Omega} \leqslant 16 n\|f\|_{\Omega} .
$$

Proof.

$$
B_{n}(f)^{\prime \prime} x=n(n-1) \sum_{k=0}^{n-2} \Delta_{1 / n}^{2} f\left(\frac{k+1}{n}\right) p_{k, n-2}(x) .
$$

Since Ω is concave,

$$
\left|B_{n}(f)^{\prime \prime} x\right| \leqslant 4 n^{2}\|f\|_{\Omega} \Omega\left(\frac{n-2}{n} x+\frac{1}{n}\right)
$$

and by the proof of Lemma (3.0),

$$
\leqslant 4 n^{2}\|f\|_{\Omega}\left\{\Omega(x)+\left|\Omega^{[1]}(x)\right| \frac{3}{n}\right\} .
$$

Thus we have

$$
\begin{aligned}
\left|\Phi(x) B_{n}(f)^{n} x\right| & \leqslant 4 n^{2}\left\{\Phi(x)+\frac{3}{n}\right\} \Omega(x)\|f\|_{\Omega} \\
& \leqslant 4 n\{n \Phi(x)+3\} \Omega(x)\|f\|_{\Omega} .
\end{aligned}
$$

For $n \Phi(x) \leqslant 1$ it follows that $\left|\Phi(x) B_{n}(f)^{\prime \prime} x\right| \leqslant 16 n\|f\|_{\Omega} \Omega(x)$.

We have
$\Phi(x) B_{n}(f)^{\prime \prime} x=\frac{n}{\Phi(x)} \sum_{k=0}^{n}\left\{(n-1)\left(\frac{k}{n}-x\right)^{2}-\frac{k}{n}\left(1-\frac{k}{n}\right)\right\} f\left(\frac{k}{n}\right) p_{k, n}(x)$.
Obviously, see (2.8) and (2.9),

$$
\begin{aligned}
\left|\Phi(x) B_{n}(f)^{\prime \prime} x\right| & \leqslant\|f\|_{\Omega}\{(n-1)+(n-1)\} \Omega\left(x+\frac{|1-2 x|}{n}\right) \\
& \leqslant 2(n-1)\|f\|_{\Omega}\left(\Omega(x)+\left|\Omega{ }^{[1]}(x)\right| \frac{|1-2 x|}{n}\right) \\
& \leqslant 2 n\|f\|_{\Omega}\left(1+\frac{1}{n \Phi(x)}\right) \Phi(x)
\end{aligned}
$$

If now $n \Phi(x) \leqslant 1$, we get

$$
\left|\Phi(x) B_{n}(f)^{n} x\right| \leqslant 4 n\|f\|_{\Omega} \Omega(x)
$$

and Lemma (4.0) is proved.
Lemma (4.1). If $g \in A$, then

$$
\left\|\Phi B_{n}(g)^{n}\right\|_{\Omega} \leqslant 6\left\|\Phi g^{\prime \prime}\right\|_{\Omega}
$$

Proof. By applying the representation

$$
g(x)=\int_{0}^{1} k(x, u) g^{\prime \prime}(u) d u+a(x)
$$

we have

$$
B_{n}(g)^{\prime \prime} x=\int_{0}^{1} B_{n}(k(\cdot, u))^{\prime \prime} x g^{\prime \prime}(u) d u
$$

Hence

$$
\begin{aligned}
\left|B_{n}(g)^{\prime \prime} x\right| \leqslant & \left\|\Phi g^{\prime \prime}\right\|_{\Omega} \int_{0}^{1} B_{n}(k(\cdot, u))^{\prime \prime} x \frac{\Omega(u)}{\Phi(u)} d u \\
\leqslant & \left\|\Phi g^{\prime \prime}\right\|_{\Omega}\left\{\Omega(x) B_{n}(L)^{\prime \prime} x\right. \\
& \left.+\left|\Omega^{[1]}(x)\right|\left((1-x) B_{n}\left(L_{2}\right)^{\prime \prime} x+x B_{n}\left(L_{1}\right)^{\prime \prime} x\right)\right\} \\
\leqslant & \left\|\Phi g^{\prime \prime}\right\|_{\Omega} \Omega(x)\left(\frac{2}{\Phi(x)}+\frac{4}{\Omega(x)}\right)
\end{aligned}
$$

and the result follows.

5. The Function Class $D(\theta)$

Theorem (5.0). For $0<\theta<1$ we have

$$
\left\|B_{n}(f)-f\right\|=O\left(n^{-\theta}\right)
$$

iff

$$
K(t, f)=O\left(t^{\theta}\right) .
$$

Proof. By use of the main ideas of [1].
We give now another characterization of the class $D(\theta)$ using Theorem (5.0).
This characterization is less implicit than the one by the K-functional. Let L be a linear continuous functional over C with the property that the linear functions are in the kernel of L. By Riesz's representation theorem we have

$$
L(f)=\int_{0}^{1} f(x) d \mu(x) .
$$

We now define

$$
|L|(f)=\int_{0}^{1} f(x)|d \mu(x)| .
$$

For $f \in C_{\Omega}$,

$$
' L(f)\left|\leqslant\|f\|_{\Omega}\right| L \mid(\Omega) .
$$

For $g \in C^{(2)} \cap C_{\Omega}, g(x)=l(x)+\int_{0}^{1} k(x, u) g^{\prime \prime}(u) d u$ where l is a linear function,

$$
|L(g)| \leqslant\left\|\Phi g^{\prime \prime}\right\|_{\Omega} \int_{0}^{1}|L(k(\cdot, u))| \frac{\Omega(u)}{\Phi(u)} d u .
$$

Then, for $f \in C_{\Omega}$,

$$
|L(f)| \leqslant|L|(\Omega) \cdot K\left\{\frac{1}{|L|(\Omega)} \int_{0}^{1}|L(k(\cdot, u))| \frac{\Omega(u)}{\Phi(u)} d u, f\right\} .
$$

Let C_{0}^{*} be the space of all linear continuous functionals L over the space C, with the property that $L(\phi)=0$ whenever ϕ is a linear function.

Lemma (5.1). For $0<\theta<1$ the following statements (i) and (ii) are aquivalent:
(i) $f \in D(\theta)$.
(ii) For all $L \in C_{0}^{*}$,

$$
|L(f)| \leqslant M_{f}\{|L|(\Omega)\}^{1-\theta}\left\{\int_{0}^{1}|L(k(\cdot, u))| \frac{\Omega(u)}{\bar{\Phi}(u)} d u\right\}^{\theta}
$$

Proof. (i) \Rightarrow (ii) is trivial: see the above arguments.
(ii) \Rightarrow (i): Let us define a special $L \in C_{0}^{*}$, for a fixed $x \in I$, by

$$
L(f)=B_{n}(f) x-f(x)
$$

Then

$$
\begin{gathered}
|L|(\Omega) \leqslant \Omega(x)+B_{n}(\Omega) x \leqslant 2 \Omega(x), \\
\int_{0}^{1}|L(k(\cdot, u))| \frac{\Omega(u)}{\Phi(u)} d u=B_{n}(F) x-F(x)
\end{gathered}
$$

where

$$
F(x)=\int_{0}^{1} k(x, u) \frac{Q(u)}{\Phi(u)} d u
$$

and, see Lemma (3.0),

$$
B_{n}(F) x-F(x) \leqslant c \frac{\Omega(x)}{n}
$$

Remark. Lemma (5.1) is also valid for $\theta=1$. For the proof we have to modify the methods of [2].

References

1. H. Berens and G. G. Lorentz, Inverse theorems for Bernstein polynomials, Indiana Univ. Math. J. 21 (1972), 693-708.
2. G. G. Lorentz, Inequalities and saturation classes of Bernstein polynomials, in "On Approximation Theory," pp. 200-207, Proc. Conference Oberwolfach 1963, Birkhäuser, Basel/Stuttgart, 1964.
