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1. INTRODUCTION

Let I = [0, 1] be the closed unit interval. Let C = C(I, R) be the space of
all continuous functions f: I — R. If £ e C is a nonnegative and concave
function, we introduce the norm || f|la = Supeen(| F(x)|/£2(x)), where I is the
open unit intervall. Now let Cg be the space of all fe C with || f|lo < -+ .
(Cqa, || * lla) is a Banach subspace of C and is continuously embedded in C.
It is easy to verify, if B,(f) is the n-th Bernstein polynomial, that the following
hold:

Bn: Cﬂ - CD ’

| Ba(Plle < [Iflla»
sup || By flo << 1.
neN

The aim of the present paper is to characterize the class of functions D(6),
8 (0, 1]. Here fe D(9) ift

Il Ba(f) — flle = O@~°).

Let D be the domain of (B,)..n in Cp, that is, the space of all functions
fe Cq with || B,(f) — flla — 0. The following statements are equivalent:

feD 1.1
and
feC®ACq, 1.2)
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where C® is the space of all twice continuously differentiable functions in C
and — is the closure operator in Cy, . In general C 5= C, . If we assume

lim ~r— = im
x-0 .Q(x) - x-1 .Q(x) ?

then it is easy to prove that D consists of all fe Cy, for which

Jx) _ o J()
lim o6y — 0 = 1% 50y

In this case D = Cp (f = ).

2. INEQUALITIES
ForO0<h<x<1—h<1andf: 71— R we set:
A (x) = f(x + ) — 2f(x) + f(x — ).
Let Ly(x) = xlog(x), Ly(x) = Ly(1 —x)and L =L, + L,.

In the following lemma we collect several simple inequalities needed in
this paper.

LemMA (2.0). We have

B(Lx — Li(x) <+, @1
Bu(Lx — Lyx) <=, 2.2)
A2Ly(x) < 2 f’; , 2.3)
APL0) <22 -, (2.4)
L) x <=, 2.5
BAL) x < 1> —. (2.6)
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Proof. For (2.1):
BuL)x = 3. % log (£)

B(L)x — Li(x) = 3 2 (10g (%) — log(x)) pe.n().

k=0

Since log is concave, we have the inequality

o (£) 1ot < L ).
Then

BuL)x — L) <~ 3 X (X ) p

k=0

(2.2) is a direct consequence of (2.1).
For (2.3) and (2.4) see [1], (2.5) is by follows from

bl (_k—i) Pr.n—2(X)

By(Ly)" x = n(n — 1) Z Vit

n(n — I) ”Z 2 (k(_llnl))/n pk.n—2(x)

Since
= [ e
0
we have

BuL) x <2n—1) [ "1 = x -+ et gt

(1 — X
- x

2
< —; s Q.E.D.
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The last two inequalities are direct consequences of the fact that Q is a
concave function.

LemMA (2.7). Let D(x) = x(1 — x). Then
3’155 2130 (l;“ - x)2 Q (%) Pya(x) < Q(x+ —l;ngx—) (2.8)

—1:"1—3’6—) 2.9)

(n—l)q5(x)2¢( )2 (o) prn) < @ (x +

Proof. Follows from the fact that the left sides of (2.8) and (2.9) are
convex combinations.

3. A K-FUNCTIONAL FOR || B,(f) — flla-

If geC® and k(x,u) is Green’s kernel for the differential operator
I(g) = g", with g(0) = g(1) = 0, then we have

g) = a(o) + | " ke, ) ") du

where a is a linear function and

__ (X - 1)“9 0 U< X,
klx, u) = gx(u -1, x<u<l.
Now we define a K-functional for fe Co. If t >0, and 4 = C® N Cyp,

we set:
K(t, f) = inf (I.f — glia + 11| Pg" lia)-

LemMa (3.0). Iffe Cq, then

| Buf) o < 3K (5. 1).

Proof. First, it is clear that || B,(f) — flle < 2|1f|. Secondly, we have
to estimate || B,(g) — g || for g € 4. Since

Bu(£)x — 8(3) = [ (BullC, ) — k(. ) £'(4)

| Bo(g)x — g(x)| < || Bg" Ilgf (Bu(k(:, u)x — k(x, u)) g?‘; du.
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Note that Ly(x) = j'; (k(x, w)/(1 — u)) du. Also (1) — 2(x) < LU(x)(u — x)
where QU(x) = {(Q'(x — 0) + 2'(x + 0)) for x & I°, since £ is concave.
Moreover, we have as an essential consequence of the fact that £ is a concave
function, the inequality | Q1(x)| P(x) < £2(x). By all this it is easy to verify
the following estimates:

J[ Bl — ket ) G

< LOBu(LD)x — L(x) + | L2Ux)] (1 — x)(Bu(Lg)x — Ly(x))
+ X(BuL)x — Li(x)))

Lo + | oy 22

| W

(x).

n

(see (2.1) and (2.2)). The rest follows by standard arguments.

4, INVERSE ARGUMENTS

We follow the main ideas of [1]. Thus, we have to estimate || @B,(f)" ||o
for fe C, and for fe A.

Lemma (4.0). Iffe Cq, then

| PB.(f) llo < 161] flla.
Proof.

n-2 1

B(f) x =ntn—1) ¥ 4 b (AT

Since 2 is concave,

B x| <4tlfla@ (P2 x4 )

n

) Prns(9)

and by the proof of Lemma (3.0),

< 4t flla {200 + | 20991 .
Thus we have

| 8() B x| < 4t {0) + 2| 2 111

< 4n{n®(x) -+ 3} 2x) || f o -
For n®(x) < 1 it follows that | D(x) B, (f)” x | < 161 f]la £2(x).
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We have
909 B(f) x = gy 2 = D (55— 2) = (1 =27 () 2.
Obviously, see (2.8) and (2.9),

| D) Bu(f)' x| <11 fllafln — 1) + (n = 1)} 2 (x + "“1:"_2&)
<200 — 1)1 flla (09 + 1 QUI(x)| L‘%z—x'l“)

<201 fla (1 + 7505 O
If now n®(x) < 1, we get
| 86 B x| < 4n flla ),
and Lemma (4.0) is proved.
Lemva (4.1). Ifge A, then

| PBu(g) o < 6] Pg" |l

Proof. By applying the representation

8) = [ kCx, 1) 8760 du + ()
we have
B9 x = [ " Buk(, )" xg"() du.
Hence

| Ba(8) x| <1108 o [ BolkC, ) x g?‘gd
< || Pg" [1o{82(x) B(L)" x

+ [ QU (1 — x) Bu(Ly)" X + xBy(Ly)" x)}

< ” dig ”O -Q(x) ((p(x) Q‘(tx)),

and the result follows.
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5. THE Function Crass D(0)
THEOREM (5.0). For 0 < 0 << 1 we have
B(f) —fl = 0™

iff
K@, ) = 0(9).

Proof. By use of the main ideas of [1].

We give now another characterization of the class D(6) using Theorem (5.0).
This characterization is less implicit than the one by the K-functional. Let L
be a linear continuous functional over C with the property that the linear
functions are in the kernel of L. By Riesz’s representation theorem we have

L =| () da().

We now define

L= ") | d().
For fe Cy,
LA < I flle | L] (£2).

For geC® N C,, g(x) = I(x) + _[; k(x, u) g"(u) du where [ is a linear
function,

L < 198"l | | LG, ) S
Then, for fe Cq,

LN < IL1@ K {1 L0 )] e i f}.

Let C§ be the space of all linear continuous functionals L over the space C,
with the property that L(¢) = 0 whenever ¢ is a linear function.

LemmA (5.1). For 0 < 8 << 1 the following statements (i) and (ii) are
aquivalent:

@D feD@).
(ii) For all Le C¥,

LI < M1 L1 @)= [ 1 L, )l e ]
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Proof. (i) = (ii) is trivial: see the above arguments.
(ii) = (i): Let us define a special L € Cf, for a fixed xe I, by

L(f) = B(f)x — f(x).

Then
|L1(Q) < 209 + B@)x < 201,
J VLG ) 0 e = By — Fx)
where

F(x) = f k(x, ) gﬁ“; du,

and, see Lemma (3.0),

Q(x)

B (F)x — F(x) < ¢ —< Q.E.D.

Remark. Lemma (5.1) is also valid for § = 1. For the proof we have
to modify the methods of [2].
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